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Abstract

Fama (1970) defined an efficient market as one in which prices always ’fully reflect’
available information. This paper formalizes this definition and provides various char-
acterizations relating to equilibrium models, profitable trading strategies, and equiva-
lent martingale measures. These various characterizations facilitate new insights and
theorems relating to efficient markets. In particular, in contrast to common belief, we
show that one can test for an efficient market without the need to assume a particular
equilibrium asset pricing model. Indeed, an efficient market is completely charac-
terized by the absence of arbitrage opportunities and dominated securities. Other
theorems useful for derivatives pricing are also provided.

KEY WORDS: efficient markets, information sets, strong-form efficiency, semi-
strong form efficiency, weak-form efficiency, martingale measures, local martingale
measures, no arbitrage, no dominance, economic equilibrium.

1 Introduction

The original definition of market efficiency is given by Fama [22], p. 383 in his seminal
paper:

“A market in which prices always ‘fully reflect’ available information is called ‘efficient’.”

Three information sets have been considered when discussing efficient markets1: (i)
historical prices (weak form efficiency), (ii) publicly available information (semi-strong
efficiency), and (iii) private information (strong form efficiency). A market may or may
not be efficient with respect to each of these information sets.2

∗Johnson Graduate School of Management, Cornell University, Ithaca, NY, 14853 and Kamakura Cor-
poration

†School of Operations Research, Cornell University, Ithaca, NY, 14853
1This partitioning of the information sets is attributed to Harry Roberts, unpublished paper presented

at the Seminar of the Analysis of Security Prices, U. of Chicago, May 1967 (see Fama (1970)).
2Market efficiency is closely related to the notion of a Rational Expectations Equilibrium (REE) where

equilibrium prices reveal private information. A fully revealing REE is one where prices reveal all private
information, analogous to a market that is strong-form efficient. A partially revealing REE is one where
prices only partially reveal all private information, corresponding to semi-strong form efficiency (see Jordan
and Radner [39] and Admati [1] for reviews). This relationship is discussed further in section 2 below.
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To test market efficiency, it is commonly believed (see, for example, Campbell, Lo and
MacKinlay [5] and Fama [24]) that one must first specify an equilibrium model, indeed
Fama [23], p. 1575 states:

“Thus, market efficiency per se is not testable. It must be tested jointly with some model of
equilibrium, an asset pricing model. This point, the theme of the 1970 review (Fama (1970)), says
that we can only test whether information is properly reflected in prices in the context of a pricing
model that defines the meaning of ’properly’.”

This common belief is, in fact, not correct. We claim that, consistent with the original
definition, it is possible to test market efficiency without specifying a particular equilibrium
model. We prove this assertion below. Our claim has precedence in the literature where it
is well understood that the existence of an arbitrage opportunity rejects market efficiency
(see, for example, Jensen [37]). And, of course, identifying an arbitrage opportunity does
not require the specification of a particular equilibrium model.

More generally, the purpose of this paper is to revisit the meaning of market efficiency
to rectify various misconceptions in the literature and to develop new theorems related
to market efficiency. As such, one can then better understand the implications of an
efficient market for empirical testing, profitable trading strategies, and the properties of
asset price processes. This analysis is facilitated by our accumulated understanding of
martingale pricing methods and their application to equilibrium models (for a review see
Duffie [20]).

To start, we first provide an analytic definition of an efficient market with respect to
an information set that is consistent with the existing definition but independent of a
particular equilibrium asset pricing model. Next, we provide two alternative characteri-
zations of this definition that facilitate both theorem proving and empirical testing.3 The
first characterization relates to the existence of an equivalent probability measure making
the normalized asset price processes martingales (sometimes called risk neutral measures).
The second characterization relates to no arbitrage (in the sense of No Free Lunch with
Vanishing Risk (NFLVR)) and No Dominance (ND). This latter characterization formal-
izes the notion that an efficient market has ”no profitable” trading strategies (see Jensen
[37]).

These two characterizations enable us to obtain some new insights and to prove some
new theorems regarding efficient markets. First we show that to test for an efficient
market, one only needs to show that there are no arbitrage opportunities nor dominated
securities with respect to an information set. These tests are both necessary and sufficient.
Surprisingly, when restricted to discrete trading economies, we show that market efficiency
is in fact equivalent only to the notion of no arbitrage (NFLVR). This is especially relevant
because most of the existing empirical studies of market efficiency are based on discrete
time models (see Fama [22],[23],[24], Jensen [37] for reviews). Because such empirical tests
do not require the specification of a particular equilibrium model, this proves our claim
that market efficiency can be tested without the joint model hypothesis.

3This is analogous to Delbaen and Schachermayer [15] providing a rigorous definition of no arbitrage
as No Free Lunch with Vanishing Risk (NFLVR) and the resulting alternative characterization of NFLVR
in terms of local martingale measures.
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With respect to different information sets, we study information expansion and reduc-
tion with respect to market efficiency. As is well known in the literature, we show that
information reduction is consistent with market efficiency, but information expansion may
not be. If the market is semi-strong form efficient, then it is weak-form efficient; but, if
the market is semi-strong form efficient, it need not be strong-form efficient. Theorems
and examples illustrate these statements. With respect to information expansion, we also
study the question: if the market is semi-strong form efficient and it is impossible to
produce arbitrage in the sense of NFLVR with respect to inside information, then is the
market strong-form efficient? In general the answer is no, but we provide sufficient con-
ditions for its validity—if the market is either: (i) discrete time, (ii) complete, or (iii) the
H-hypothesis holds. The H-hypothesis is a mathematical condition often used in the area
of credit risk pricing and hedging (see Elliott, Jeanblanc and Yor [21] and Bielecki and
Rutkowski [3]). Our analysis thus provides an economic interpretation of the H-hypothesis
relating to market efficiency.

We also study the conditions imposed by market efficiency on an asset price process
beyond those imposed by no arbitrage (NFLVR) alone. These insights have two uses.
First, they provide an alternative method for testing market efficiency based on a joint
hypothesis. Here the joint hypothesis is the specification of a particular stochastic process
for asset prices. This additional hypothesis is testable independently of market efficiency.
And, an efficient market is a nested subclass—the price process supports efficiency if
its parameters are in a particular subset and it is inefficient otherwise. In contrast, the
classical joint hypothesis—specifying a particular equilibrium model—is not independently
testable. The equilibrium model and efficiency are both accepted or rejected in unison.
Second, these insights are also useful when one wants to impose more structure on the
economy than just NFLVR to capture market wide conditions related to aggregate supply
equalling aggregate demand. This additional structure has already proven relevant in the
study of asset price bubbles (see Jarrow, Protter and Shimbo [35], [36]). For pricing and
hedging purposes, we illustrate the additional restrictions imposed by an efficient market
on various stochastic volatility models that are useful for pricing equity and index options.

An outline for this paper is as follows. Section 2 introduces the model structure
while section 3 defines an efficient market and proves various characterization theorems.
Section 4 discusses different information sets, section 5 presents some market efficient price
processes, and section 6 concludes.

2 The Model

We consider a continuous time and continuous trading economy on an infinite horizon.
There are a finite number of traders in the economy. Securities markets are assumed to
be competitive and frictionless.

2.1 The Market

We are given a complete filtered probability space (Ω,F ,F, P ) on [0,∞) that satisfies the
usual conditions. P is the statistical probability measure. The traded securities consist of a
locally riskless money market account together with d risky securities whose market prices
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at time t, given in units of the money market account, are S(t) = (S1(t), . . . , Sd(t)). We
let a security S0 corresponds to the locally riskless money market account with S0(t) ≡ 1.
To simplify the presentation we assume that the securities have no cash flows. We also
make the following assumption:

Si(t) ≥ 0 a.s. for all t and i = 1, ..., d.

S = (S(t))t≥0 denotes a vector stochastic process, and we let FS denote the natural
filtration of S, made right-continuous and augmented with the P -null sets. The process S
is assumed to be a (not necessarily locally bounded) semimartingale with respect to FS .
We assume that F contains FS and that S is a semimartingale with respect to F. Although
we do not require that F0 be P -trivial, we do assume that S0 is a.s. constant.

For a given filtration F, we refer to the pair (F, S) as a market.

2.2 Trading Strategies

The economy is populated by a finite number of investors each of whom have the beliefs P
and the information filtration F. Due to the competitive markets assumption, traders act
as price takers. Given frictionless markets (no transaction costs nor restrictions on trade),
the trading strategies available to an investor are modeled by F-admissible strategies H.
That is, H is an F predictable and S-integrable process which is (F, a)-admissible for some
a ∈ R, meaning that H · S ≥ −a. Here,

(H · S)t =
d∑

i=0

∫ t

0
H i(s)dSi(s)

corresponds to a vector stochastic integral, see Protter [49] and Jacod [31]. We use the
convention that (H · S)0 = 0.

We require that the admissible trading strategies be self-financing, meaning that
there are no cash flows generated by the trading strategy. That is, letting V (t) =∑d

i=0H
i(t)Si(t) denote the time t value of the trading strategy, the self-financing con-

dition is that V (t) = V (0)+ (H ·S)t for all t. A variant of the self-financing condition will
be discussed later in the context of endowment and consumption streams.

2.3 No Arbitrage (NFLVR)

Our no arbitrage condition is the classical No Free Lunch with Vanishing Risk (NFLVR)
due to Delbaen and Schachermayer [15], [17]. NFLVR means that there is no sequence fn =
(Hn ·S)∞, where each Hn is admissible and (Hn ·S)∞ exists, such that ‖max(−fn, 0)‖∞ →
0 and fn → f a.s. for some f ≥ 0 with P (f > 0) > 0. In our context, we will need to
impose NFLVR on specific time intervals. We therefore make the following definition (note
that taking T = ∞ yields the usual definition of NFLVR).

Definition 1 A market (F, S) satisfies NFLVR on [0,T] if the stopped process ST , together
with the filtration F, satisfies NFLVR.
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The Fundamental Theorem of Asset Pricing (see Delbaen and Schachermayer [15], [17])
states that in our setting NFLVR is equivalent to the existence of an equivalent local
martingale measure4. In other words, a market (F, S) satisfies NFLVR on [0, T ] if and
only if the set

Mloc(F, S, T ) = {Q : Q ∼ P and S is an (F, Q) local martingale on [0, T ]}

is non-empty. When there is no risk of confusion, we will sometimes simply write Mloc,
Mloc(F), etc.

2.4 No Dominance (ND)

The notion of No Dominance (ND) was introduced by Merton [45] to study the properties
of option prices. Merton’s definition can be formalized as follows.

Definition 2 (No Dominance) the ith security Si = (Si(t))t≥0 is undominated on [0, T ]
if there is no admissible strategy H such that

Si(0) + (H · S)T ≥ Si(T ) a.s. and P{Si(0) + (H · S)T > Si(T )} > 0.

A market (F, S) satisfies ND on [0, T ] if each Si, i = 0, . . . , n, is undominated on [0, T ].

In words, ND states that it is not possible to find a trading strategy that generates a set
of payoffs at time T that dominate the payoffs to any traded security. ND has been used
recently in the literature by Jarrow, Protter and Shimbo [35], [36] for the study of asset
price bubbles. Moreover, a closely related notion known as “Relative Arbitrage” has been
recently studied by Fernholz, Karatzas, Kardaras, Ruf, and others; see for instance [26],
[25] and [51].

Notice that the above definition also makes sense for T = ∞. The reason is that
(H · S)∞ exists for every admissible H, so in particular Si(0) + (H i · S)∞ = Si(∞) exists
for every i, where H i is given by

H i = (0, . . . , 0, 1, 0, . . . , 0), (1)

with the one in position i. This shows that ND on [0,∞] is a well-defined notion in the
presence of NFLVR. In addition, we point out that if Si is undominated on [0, T ], it is
also undominated at all earlier times T ′ < T . Indeed, if there were a dominating strategy
H, one could apply the strategy K(t) = H(t)1{t≤T ′} +H i(t)1{t>T ′} where H i is as in (1).
This corresponds to holding one unit of asset i up to the time horizon. The nonnegativity
of Si ensures that H i is admissible. The strategy K satisfies

Si(0) + (K · S)T = Si(T ) + Si(0) + (H · S)T ′ − Si(T ′) ≥ Si(T ),

with positive probability of having a strict inequality. But, this is impossible since Si is
undominated on [0, T ].

4Notice that we do not have to distinguish between local martingales and sigma martingales since prices
are nonnegative. This follows from the definition of a sigma martingale and the Ansel-Stricker theorem.
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NFLVR and ND are distinct conditions, but both imply the simpler No Arbitrage
(NA) condition: there can be no admissible strategy H such that

(H · S)T ≥ 0 a.s. and P{(H · S)T > 0} > 0.

Indeed, since ND in particular implies that S0 ≡ 1 is undominated, it follows that ND
implies NA. And, it has been shown by Delbaen and Schachermayer [15] that a market
(F, S) satisfies NFLVR if and only if it satisfies NA together with the condition that the
set of payoffs of 1-admissible strategies with bounded support is bounded in probability.

2.5 Maximal Trading Strategies

Essential in proving many of our results in the notion of maximal trading strategies intro-
duced by Delbaen and Schachermayer [17].

Definition 3 (Maximal Strategies) A process H is called F-maximal on [0, T ] if it is
F-admissible and for every F-admissible strategy K such that (K · S)T ≥ (H · S)T , it is
true that (K · S)T = (H · S)T .

If the filtration and/or the time horizon is clear from the context, we drop these
qualifiers and simply call H maximal.

To understand the meaning of a maximal trading strategy H, one first fixes a time
T payout generated by a trading strategy (H · S)T . Then, a maximal admissible trading
strategy has the largest such fixed payoff possible starting at time 0 with zero investment.
In terms of maximality, the No Dominance (ND) condition can be phrased as requiring
that all the strategies H i in (1) are maximal.

We need two results from Delbaen and Schachermayer [17] concerning maximal strate-
gies.

Lemma 1 If S is a positive F semimartingale that satisfies NFLVR with respect to F,
then for any F-admissible strategy H the following are equivalent:

(i) H is F-maximal on [0, T ].

(ii) There is Q ∈Mloc(F) such that H · S is an (F, Q) martingale on [0, T ].

(iii) There is Q ∈Mloc(F) such that EQ(H · S)T = 0.

Proof. See [17], Theorem 5.12., while keeping in mind that local martingale measures
and sigma martingale measures coincide in our setting where S is nonnegative.

Lemma 2 Finite sums of maximal strategies are again maximal.

Proof. This follows from Theorem 2.14 in [16], which is stated for the case where S
is locally bounded. However, an examination of the proof of this theorem, and the results
that it relies on (Lemma 2.11, Proposition 2.12 and Proposition 2.13 in the same reference)
show that the local boundedness is never used.
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2.6 An Economy

We consider a pure exchange economy on a finite horizon [0, T ]. An economy consists of a
market (F, S) and a finite number of investors (k = 1, ...,K) characterized by their beliefs,
information, preferences, and endowments.

We let αi denote the aggregate net supply of the ith security. It is assumed that each
αi is non-random and constant over time, with α0 = 0 and αi > 0 for i = 1, . . . , d.

There is a single consumption good that is perishable. The price of the consumption
good, in units of the money market account, is denoted ψ = {ψ(t) : 0 ≤ t ≤ T}. We
assume that ψ(t) is strictly positive.

Each investor solves an optimization problem where he seeks to maximize utility from
consumption. In Karatzas and Žitković [43], the optimizing agent receives endowments and
consumes his wealth continuously through time, using a general incomplete semimartingale
financial market to finance his consumption. The utility structure is very general, allowing
among other things for state dependent utility functions. We adopt a similar setup. Let
µ be the probability measure on [0, T ] such that µ({T}) > 0. Two canonical examples are
µ([0, T )) = 0, µ({T}) = 1, which corresponds to utility from terminal consumption only,
and

µ(dt) =
1

2T
dt+

1
2
δ{T}(dt),

which is diffuse on [0, T ) and has an atom {T}. This corresponds to utility from continuous
consumption over [0, T ) and a bulk consumption at T . The use of the measure µ simplifies
the notation by allowing us to treat utility from intermediate and final consumption within
a single framework.

The kth investor is characterized by the following quantities.

• Beliefs and information (P,F). We assume that all investors have the same beliefs
and information.

• A time dependent utility function Uk : [0, T ] × R+ → R such that for each t in the
support of µ, the function Uk(t, ·) is concave and strictly increasing. The utility that
agent k derives from consuming c(t)µ(dt) at each time t ≤ T is

Uk(c) = E

(∫ T

0
Uk(t, c(t))µ(dt)

)
.

Since µ({T}) > 0, the utility is strictly increasing in the final consumption c(T ).

• Initial wealth xk. Given a trading strategy H = (H1, . . . ,Hd), the investor will be
required to choose his initial holding H0(0) in the money market account such that

xk = H0(0) +
d∑

i=1

H i(0)Si(0). (2)

• An endowment stream εk(t), t < T of the commodity. This means that the investors
receive εk(t)µ(dt) units of the commodity at time t ≤ T . The cumulative endowment
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of the kth investor, in units of the money market account, is given by

Ek(t) =
∫ t

0
ψ(s)εk(s)µ(ds).

The setup is quite general and includes most formulations studied in the utility maxi-
mization literature. In Kramkov and Schachermayer [44], utility from terminal wealth in
incomplete markets is considered, in which case ψ ≡ 1, µ({T}) = 1, and εk ≡ 0. These
results are extended in Cvitanić, Schachermayer and Wang [10] to the case of random
endowments, relaxing the condition εk ≡ 0. In Karatzas and Žitković [43], the optimiz-
ing agent receives endowments and consumes his wealth continuously through time, so
µ([0, T )) is no longer zero. In fact, µ([0, t]) > 0 is assumed for each t < T . All the
above papers make additional assumptions on the utility function Uk(t, ·) for some or
all of their results. In particular, it is assumed that for each t in the support of µ, the
function Uk(t, ·) is strictly concave, strictly increasing, continuously differentiable, and sat-
isfies the Inada conditions: ∂2Uk(t, 0+) = ∞ and ∂2Uk(t,∞) = 0. Moreover, a condition
that figures prominently is reasonably asymptotic elasticity condition. In Kramkov and
Schachermayer [44] and Cvitanić, Schachermayer and Wang [10] it takes the form

lim sup
x→∞

xU ′(x)
U(x)

< 1,

where U(x) = U(T, x). In Karatzas and Žitković [43], a uniform in time version of this
condition is used, together with additional regularity conditions. It is also possible to relax
other aspects of the utility structure. In Karatzas and Žitković [43], the utility function
is allowed to evolve stochastically in a progressively measurable way. This would require
boundedness assumptions on ψ(t), see Example 3.4 in Karatzas and Žitković [43]. Finally,
we mention Biagini and Frittelli [2], where utilities defined on R are considered.

Each investor chooses a consumption plan {ck(t) : 0 ≤ t ≤ T} with ck(t) ≥ 0, and
a trading strategy in the money market account, H0

k , and the risky securities, Hk =
(H1

k , . . . ,H
d
k ). The investor’s wealth Wk(t) at time t is

Wk(t) = H0
k(t) +

d∑
i=1

H i
k(t)S

i(t),

and the holdings H0
k(t) of the money market account must be chosen so that the strategy

is self-financing, i.e.,

Wk(t) = xk + Ek(t) +
∫ t

0
Hk(u)dS(u)− Ck(t)

where

Ck(t) =
∫ t

0
ψ(s)ck(s)µ(ds)

is the value of cumulative consumption. Note that the self-financing condition guarantees
that (2) holds.
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At time T , the investors’ financial holdings are transformed into units of the con-
sumption good, which can be consumed. That is, at time T the kth investor receives a
liquidating dividend of

H0
k(T ) +

∑d
i=1H

i
k(T )Si(T )

ψ(T )
,

in units of the consumption good.
A pair (ck,Hk) is called admissible if ck is progressively measurable, Hk is admissible

in the usual sense, and it generates a wealth process Wk with nonnegative terminal wealth,
Wk(T ) ≥ 0. The consumption rate process ck is called admissible if there exists Hk such
that (ck,Hk) is admissible.

Investor k solves the following optimization problem:

The Investor’s Problem: To maximize Uk(c) over all admissible consumption plans
c = {c(t) : 0 ≤ t ≤ T}. For fixed endowments we write

uk(x) = sup{Uk(c) : c is admissible, xk = x}

In the utility maximization literature the existence of an optimal solution has been
established under a wide range of assumptions. One common condition is to require
uk(x) < ∞ for some x > 0, together with the existence of an equivalent local martingale
measure. In our setting, we directly assume the existence of an optimal solution to the
investor’s problem. This is a powerful assumption with several important consequences.

Lemma 3 Assume that for some x > 0, the investor’s problem has an optimal solution
with a finite optimal value. Let (ĉ, Ĥ) be an admissible pair such that ĉ achieves the
optimum. Then Ĥ is a maximal strategy.

Proof. If Ĥ is not maximal, there is an admissible strategy J such that
∫ T
0 J(t)dS(t) ≥∫ T

0 Ĥ(t)dS(t), with strict inequality with positive probability. Hence this strategy supports
the same consumption ĉ(t) for t < T , and the additional final consumption

ĉ(T ) +

∫ T
0 J(t)dS(t)−

∫ T
0 H(t)dS(t)

µ({T})
,

which is nonnegative and strictly positive with positive probability. This strictly improves
the utility of the investor, contradicting the optimality of (ĉ, Ĥ).

We note that as in Karatzas and Žitković [43] we may restrict the investors’ portfolio
choices to strategies Ht ∈ K a.s. for all t ∈ [0, T ] where K is a convex cone describing
trading restrictions, such as a short sales prohibition. The proof of Lemma 3 still goes
through, but maximality now refers to the restricted set of admissible strategies.

Lemma 4 Assume that for some x > 0, the investor’s problem has an optimal solution
with finite optimal value. Then S satisfies NFLVR. Consequently, Mloc is non-empty.
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Proof. By a well-known characterization of NFLVR, it suffices to show that: (a) NA
is satisfied, and (b) the set K =

{ ∫ T
0 H(s)dS(s) : H is 1-admissible

}
is bounded in L0,

see [15], Corollary 3.9.
Let (ĉ, Ĥ) be an optimal consumption-investment plan. Suppose first NA fails, and

let J be an arbitrage strategy. The strategy H̃ = Ĥ + J is then admissible, and with
X̃T =

∫ T
0 H̃(t)dS(t) and X̂T =

∫ T
0 Ĥ(t)dt, we have X̃T ≥ X̂T and P (X̃T > X̂T ) > 0.

Hence Ĥ is not maximal, which is impossible by Lemma 3.
Next, the fact that the set K is bounded in L0 follows from a straightforward adaptation

of the proof of Proposition 4.19 in [40]. The argument goes through almost unchanged
as soon as we have established that u(·) is concave. For this, choose arbitrary xi > 0 for
i = 1, 2 and λ ∈ [0, 1], and set x0 = λx1 +(1−λ)x2. There are sequences {cni }n∈N, i = 1, 2,
of consumption plans such that cin is admissible given initial capital xi, and

u(xi) = lim
n→∞

E
[ ∫ T

0
U(t, cin(t))µ(dt)

]
.

Now, c0n = λc1n+(1−λ)c2n is admissible with initial capital x0. Hence, due to the concavity
of U(t, ·) for t ∈ [0, T ], we get

u(x0) ≥ lim sup
n→∞

E
[ ∫ T

0
U(t, c0n(t))µ(dt)

]
≥ λu(x1) + (1− λ)u(x2).

Thus u(·) is concave, as claimed.

This lemma is the formalization of the well-known result that the existence of an
investor’s optimal consumption choice implies that there are no arbitrage opportunities.

An economy is defined by the collection (P,F, {εk}K
k=1, {Uk}K

k=1).

2.7 An Equilibrium

This section defines a market equilibrium and explores its implications. Given an economy
(P,F, {εk}K

k=1, {Uk}K
k=1), an economic equilibrium determines the price processes (ψ, S) by

equating aggregate supply equal to aggregate demand. This is formalized in the following
definition.

Definition 4 (Equilibrium) Given an economy (P,F, {εk}K
k=1, {Uk}K

k=1), a consump-
tion good price index ψ, financial asset prices S = (S0, S1, . . . , Sd), and investor consumption-
investment plans (ĉk, Ĥk) for k = 1, . . . ,K, the pair (ψ, S) is an equilibrium price process
if for all 0 ≤ t ≤ T a. e. P ,

(i) securities markets clear:

K∑
k=1

Ĥ i
k(t) = αi, i = 0, . . . , d;
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(ii) commodity markets clear:
K∑

k=1

ĉk(t) =
K∑

k=1

εk(t);

(iii) investors’ choices are optimal: (ĉk, Ĥk) solves the kth investor’s utility maximization
problem and the optimal value is finite.

Such an equilibrium is sometimes called an Arrow-Radner equilibrium. Sufficient con-
ditions for the existence of such an equilibrium can be found in Duffie [19], Karatzas,
Lehoczky and Shreve [42], Dana and Pontier [14], Dana [12], [13], and Žitković [55].

We now establish some properties that must hold in an economic equilibrium. Notice
that NFLVR always holds in equilibrium as a consequence of Lemma 4.

Lemma 5 Suppose an equilibrium is given. Then holding the market portfolio is a maxi-
mal strategy, i.e. H = (H1, . . . ,Hd) given by

H i(t) ≡ αi, i = 1, . . . , d

is maximal.

Proof. By Lemma 4, Mloc 6= ∅. Furthermore, Lemma 3 implies that each Ĥk is
maximal. By Lemma 2, their sum H = Ĥ0 + · · ·+ ĤK is also maximal. But the clearing
condition for the securities markets implies that H i ≡ αi for each i = 1, . . . , d.

The next result shows that buying and holding assets in positive net supply is also a
maximal strategy.

Lemma 6 Suppose an equilibrium is given. Then, for each fixed i ∈ {0, 1, . . . , d}, the
strategy H = (H0, . . . ,Hd) given by

H i ≡ 1

Hj ≡ 0, j 6= i

is maximal, i.e. ND holds.

Proof. By Lemma 4, NFLVR and hence NA holds, so the claim is true for i = 0.
Suppose i ∈ {1, . . . , d} and let H̃ be the market portfolio from Lemma 5, multiplied by a
factor 1/αi. This is well-defined since αi > 0, and H̃ is still maximal because maximality
is not affected by positive scaling. By Lemma 5 and Lemma 1, there is a probability
Q ∈ Mloc under which

∫
H̃dS becomes a martingale. Due to the nonnegativity of asset

prices,
d∑

i=1

Si(0) +
∫
H̃dS = Si +

∑
i6=j

αj

αi
Sj ≥ Si.

Hence under Q, Si is a nonnegative local martingale dominated by a true martingale, and
therefore itself a true martingale. Another application of Lemma 1 gives the maximality
of H.
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As presented, our equilibrium is for an economy with symmetric information. An in-
teresting extension is the asymmetric information case, where all traders share the same
beliefs P but have different information sets represented by the filtrations Fk. Further-
more, the market filtration F =

⋂
k Fk consists of the information that is available to all

traders. In the investor’s optimization problem, Fk replaces F. Hence, the kth investor’s
consumption and portfolio choices (ck,Hk) are admissible with respect to Fk. His op-
timal strategy Ĥk will be Fk-maximal, and since F ⊂ Fk it is intuitively clear that no
F-admissible strategy can dominate Ĥk. However, there are technical issues related to
the invariance of stochastic integrals as the filtration changes, which we leave for future
research.

All else remains the same, with a market still being the pair (F, S). The definition of an
equilibrium is unchanged with equilibrium prices reflecting the market clearing conditions
(i) and (ii), and investors’ decisions being optimal (iii), with the changed measurability
requirements. When discussing NFLVR and ND, the market information set F is the
relevant one. This asymmetric information extension relates our equilibrium notion to
that of a Rational Expectations Equilibrium (REE), see Jordan and Radner [39] and
Admati [1] for reviews. Since FS ⊂ F ⊂ Fk, an investor’s decisions are conditioned
on the information revealed by prices. An equilibrium price process (ψ, S), therefore,
confirms the investors’ beliefs conditioned on FS .

3 Market Efficiency

This section defines an efficient market and provides two equivalent characterizations that
are useful for empirical testing and theorem proving.

3.1 Definition

As discussed in the introduction, it is commonly believed that to test market efficiency,
one needs to assume a particular equilibrium model in order to investigate its implications
relating to the properties of the price process or the existence of abnormal trading profits.
Both of these implications are derived from the martingale properties of the equilibrium
price processes and they were first discovered by Samuelson [52]. If these implications are
violated in the empirical study, then efficiency is rejected. In fact, Jensen [37], p. 96 in
his review of the empirical literature uses these necessary conditions as the definition of
an efficient market:

“A market is efficient with respect to information set θt if it is impossible to make economic
profits by trading on the basis of information set θt. By economic profits, we mean the risk
adjusted returns net of all costs. Application of the zero profit condition to speculative markets
under the assumption of zero storage costs and zero transactions costs gives us the result that asset
prices (after the adjustment for required returns) will behave as a martingale with respect to the
information set θt.”

Consistent with the intent of these definitions, we provide a model independent and
rigorous definition of an efficient market that has content (to be shown) and can be em-
pirically tested (also to be shown), i.e.

12



Definition 5 A market (F, S) is called efficient on [0, T ] with respect to F if there exists a
consumption good price index ψ and an economy (P,F, {εk}K

k=1, {Uk}K
k=1) for which (ψ, S)

is an equilibrium price process S on [0, T ].
If this holds for every T <∞, the market is called efficient with respect to F.

This definition says that a market (F, S) is efficient with respect to F if there exists an
economy whose equilibrium price process is consistent with S.5

3.2 Characterization Theorems

This section gives several different characterizations of an efficient market. Our first
characterization relates an efficiency on [0, T ] to the economic notions of ND and NFLVR.
The second gives a description in terms of equivalent martingale measures. The following
theorem is the main result of this section.

Theorem 1 (Characterization of efficiency) Let (F, S) be a market. The following
statements are equivalent.

(i) (F, S) is efficient on [0, T ].

(ii) (F, S) satisfies both NFLVR and ND on [0, T ].

(iii) There exists a probability Q, equivalent to P , such that S is an (F, Q) martingale
on [0, T ]. That is, M(F, S, T ) 6= ∅.

Proof. (i) =⇒ (ii): If (F, S) is efficient on [0, T ], there is a consumption good price
index ψ and an economy (P, F, {εk}K

k=1, {Uk}K
k=1) such that (ψ, S) is an equilibrium price

process. Hence by Lemma 4 and Lemma 6, both NFLVR and ND hold.
(ii) =⇒ (iii): If (F, S) satisfies ND and NFLVR, then all the strategies H i in (1) are

maximal. By Lemma 2, H = H1 + . . .+Hn = (1, . . . , 1) is then also maximal. Lemma 1
thus implies that there is Q ∈M(F) turning

H · S = (S1 − S1(0)) + . . .+ (Sn − Sn(0))

into a martingale. Using the nonnegativity of S, we see that each nonnegative Q local
martingale Si is dominated by a martingale, and is therefore itself a martingale.

(iii) =⇒ (i): Assume that there exists an equivalent martingale measure Q. We
need to construct an equilibrium supporting the price process S. Let all investors have
logarithmic utilities,

Uk(x) =
{

lnx, x > 0
−∞, x ≤ 0

5In the context of an asymmetric information economy, a fully revealing REE is an equilibrium price
process (ψ, S) such that FS=

WK
k=1Fk, i.e. all private information is reflected in the market price process.

Since also FS ⊂ Fk, it follows that FS = Fk for each k. That is, all investors share the same information
set, namely the information contained in the prices. A partially revealing REE is an equilibrium price
process where this is not the case. A fully revealing REE corresponds to strong-form market efficiency,
while a partially revealing REE corresponds to weak-form efficiency.
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for each k, and suppose they only derive utility from terminal consumption, i.e. µ({T}) =
1. Set ψ(t) ≡ 1 and assume that the endowment streams εk are identically zero—then the
investors only receive utility from the liquidating dividend.

Next, suppose that the investor beliefs are given by an equivalent probability P ∗, which
we define via

dP ∗

dQ
= Z(T ),

where

Z(t) =
α1S1(t) + · · ·+ αdSd(t)

α1 + · · ·+ αd
,

which is a Q-martingale. The kth investor’s optimization problem is then

sup
{
EP ∗ [Uk(X(T ))] : X(T ) = xk +

∫ T

0
H(s)dS(s), H admissible

}
.

Since Uk(x) = −∞ for x ≤ 0, we may restrict attention to strategies for which X(T ) > 0.
Then, due to the supermartingale property of X = xk +

∫
H(t)dS(t) under Q, X(t) ≥

EQ(X(T ) | Ft) ≥ 0 for all t ≤ T . Hence, in fact, we only need to consider xk-admissible
strategies.

Then, with the preferences and beliefs described above, the optimal strategy for each
investor is to invest his initial wealth in the market portfolio until the time horizon T .
As a consequence, there is an equilibrium supporting the market (F, S). Indeed, to prove
this, let H be any 1-admissible strategy, and set X = 1 +

∫
HdS. Jensen’s inequality, the

definition of P ∗, and the supermartingale property of X under Q yield

EP ∗

[
ln
X(T )
Z(T )

]
≤ lnEP ∗

[ 1
Z(T )

X(T )] = lnEQ[X(T )] ≤ ln 1 = 0.

Hence
EP ∗ [lnZ(T )

]
= EP ∗ [lnX(T )]− EP ∗

[
ln
X(T )
Z(T )

]
≥ EP ∗ [lnX(T )].

A process X̃ is the gains process of an xk-admissible strategy if and only if it is of the
form xkX for X as above. Since the above yields

EP ∗ [Uk(xkZ(T ))] = lnxk + EP ∗ [lnZ(T )]
≥ lnxk + EP ∗ [lnX(T )] = EP ∗ [Uk(xkX(T ))],

we conclude that investing xk in the market portfolio and holding until time T is optimal.
It is now straightforward to verify that we have an equilibrium. With preferences as

described above, the kth investor’s holdings in the ith asset at time t is given by

Ĥ i
k(t) = xk

αi

α1S1(0) + · · ·+ αdSd(0)
.

Summing over k and using that
∑K

k=1 xk = α1S1(0) + · · · + αdSd(0) shows that the
securities markets clear. The commodity markets also clear, since there is no intermediate
consumption or endowments. This concludes the proof.
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Characterization (iii) formalizes the connection between martingales and efficiency as
first noted by Samuelson [52] and Fama [22]. As pointed out previously, by the Funda-
mental Theorem of Asset Pricing, NFLVR on [0, T ] implies that Mloc(F, S, T ) 6= ∅. The
efficiency condition is stronger. It requires that M(F, S, T ) 6= ∅ where

M(F, S, T ) = {Q ∼ P : S is an (F, Q) martingale on [0, T ]}.

The set M(F, S, T ) can equivalently be described as consisting of the equivalent measures
that turn S into a uniformly integrable martingale on [0, T ]. When there is no risk of
confusion we write M, M(F), etc.

Consistent with this observation, there exist markets that satisfy NFLVR but are not
efficient. An example is any complete market with a price bubble, see Jarrow, Protter and
Shimbo [35]. To see this, consider the following simple economy consisting of only two
traded assets, the money market account and S1. Let S1 be an inverse Bessel process6.
Then Mloc consists of a single element under which S is a strict local martingale (i.e. a
local martingale that is not a martingale), and hence M = ∅. Theorem 1 then shows that
this market, where we can take F = FS , is not efficient.

The alternative characterization of efficiency in terms of ND and NFLVR makes precise
the meaning of “no economic profits” in the definition of an efficient market as given by
Jensen [37], p. 96 and quoted above. “No economic profits” means NFLVR and ND. As
stated, it is self-evident that the notions of NFLVR and ND are independent of any par-
ticular equilibrium model; they must be satisfied by all such equilibrium models. It is this
characterization that facilitates empirical tests of market efficiency that are independent
of the joint model hypothesis.

Indeed, given any market (F, S), to disprove efficiency one just needs to identify an
arbitrage opportunity (FLVR) or a dominating trading strategy. Conversely, if one can
show that no such strategies exist, then the market is efficient. To show that no such
strategies exist, one can use Theorem 1, and show that such a martingale probability Q
exists. Given a specification for the stochastic process S, an empirical investigation of the
process’s parameters could confirm or reject this possibility. In contrast to the classical
joint hypothesis test of an efficient market, this alternative provides a test of market
efficiency where the additional hypothesis can be independently validated (see section 5
below).

This theorem also helps us to understand the relationship between an efficient market
and asset price bubbles. As shown in Jarrow, Protter and Shimbo [35], [36], a complete
market that is efficient (satisfies both NFLVR and ND) has no price bubbles. However,
they provide numerous examples of efficient but incomplete markets that contain price
bubbles. Hence, there is a weak relationship between market efficiency and the non-
existence of asset price bubbles, the link is the notion of a complete market.

Our second theorem deals with the case where (F, S) is efficient with respect to F,
i.e. where efficiency on [0, T ] holds for every finite T (see Definition 5).

Theorem 2 The market (F, S) is efficient if and only if there is a family of probabilities
{Qt}t≥0, where Qt is defined on Ft, such that

6The inverse Bessel process can be defined as 1/‖B‖, where B is a three-dimensional Brownian motion
starting from (1, 0, 0). See [8] for details.
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(i) Qt = Qs on Fs for all s < t,

(ii) Qt ∼ P on Ft and S is a (F, Qt) martingale on [0, t].

Proof. Sufficiency follows by considering QT and applying Theorem 1 to (F, S) re-
stricted to [0, T ]. For necessity, it suffices to construct measures Qn, n ∈ N, such that
Qn ∼ P , Qn+1 = Qn on Fn, and S is a Qn martingale on [0, n]. We construct the Qn

inductively. Let Q0 = P . Suppose Qn−1 has been constructed, and choose Q̃n, equiv-
alent to P , such that S becomes a uniformly integrable martingale on [0, n]. Such a
measure exists due to the hypothesis and Theorem 1. Let Zn−1

t = EP (dQn−1

dP | Ft) and

Z̃n
t = EP (dQ̃n

dP | Ft), and define

Zn
t =

{
Zn−1

t t < n− 1,

Zn−1
n−1

Z̃n
t

Z̃n
n−1

t ≥ n− 1.

The measure Qn given by dQn

dP = Zn
n has density process Zn, which coincides with Zn−1

on [0, n− 1] implying that Qn = Qn−1 on Fn−1.
It remains to check that S is a Qn martingale on [0, n], so pick 0 ≤ s < t ≤ n and

A ∈ Fs. First, if t ≤ n− 1, then EQn(1A(Si
t − Si

s)) = EQn−1(1A(Si
t − Si

s)) = 0 for each i.
If instead s ≥ n− 1, then Bayes’ rule yields

EQn(Si
t | Fs) =

1
Zn

s

EP (Zn
t S

i
t | Fs) =

1
Z̃n

s

EP (Z̃n
t S

i
t | Fs) = EQ̃n(Si

t | Fs) = Si
s.

Finally, if s ≤ n− 1 ≤ t, then

EQn(1A(Si
t − Si

s)) = EQn(1A(Si
t − Si

n−1)) + EQn(1A(Si
n−1 − Si

s)) = 0,

by the two previous cases. The proof is complete.

Given the consistent family {Qt}t≥0 from Theorem 2, a natural question is if some form
of the Kolmogorov extension theorem can be used to extend the Qt to a measure on F∞.
This is not possible in general. The problem, which is well understood, is best explained
through an example. Consider the Black-Scholes model St = S0 exp{Wt +(µ− 1

2)t}, where
µ > 0 and W is Brownian motion under P . Any risk-neutral measure Q would have to
be such that Bt = Wt + µt is Brownian motion under Q. However, the measures P and
Q are not equivalent: the stopping time τ = inf{t ≥ 0 : Bt = 1} satisfies P (τ = ∞) = 0,
but Q(τ = ∞) > 0. Further, Q and P are not even equivalent on Ft for t <∞, since the
usual conditions imply that the P null set {τ = ∞} lies in Ft.

One can resolve this problem under some additional regularity conditions on the fil-
tration. The technique is not new, but we nonetheless state the result since it sheds
some light on the role of the null sets, whose economic meaning is somewhat opaque. Let
Fo = (Fo

t )t≥0 be a filtration that is the right-continuous modification of a standard system
E = (Et)t≥0. For the definition of standard system, see Parthasarathy [48], Chapter V.
In our context, the most important example of a standard system is where Ω is the set
of càdlàg paths that can explode in finite time, and Et is generated by the coordinate
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process. This example is discussed by Föllmer [27] and Meyer [46]. We make the following
assumption:

F = (Ft)t≥0 is the P -completion of Fo.

See Jacod and Shiryaev [33], p. 2, for a description of the completion procedure. Now,
there exists an Fo adapted process that is P -indistinguishable from S (see Jacod and
Shiryaev [33], p. 10.) Let So be such a process. We then have the following theorem.

Theorem 3 The market (F, S) is efficient for every T < ∞ if and only if there is a
probability Qo on Fo

∞ such that

(i) Qo ∼ P on Ft for all t <∞,

(ii) So is an (Fo, Qo) martingale.

The proof, which involves a lot of technical verification, is omitted but available from
the authors upon request.

3.3 Discrete Time Markets

Most of the empirical literature testing for market efficiency utilizes discrete time markets
(see Fama [22],[23],[24] and Jensen [37] for reviews). Hence, it is important to understand
the characterization of market efficiency in a discrete time model. Surprisingly, we have
the following theorem:

Theorem 4 Let (F, S) be a market in discrete time, t ∈ {0, 1, . . .}. A discrete time
market (F, S) is efficient on {0, . . . , T} with respect to F if and only if it satisfies NFLVR
on {0, . . . , T}.

This is an important result for interpreting the empirical finance literature that tests
for market efficiency. As this theorem states, an efficient market is one that contains
no arbitrage opportunities. This is both a necessary and sufficient condition for market
efficiency in discrete time markets. Its use to test for an efficient market without specifying
a particular equilibrium model is self-evident.

The proof of this theorem uses the following lemma, whose proof is in the Appendix.7

Lemma 7 Let (Ω,F ,F, P ) with F = (Ft)t=0,1,...,T be a filtered probability space in finite
discrete time. Any local martingale L that satisfies E(|L0|) < ∞ and E(L−T ) < ∞ is a
true martingale.

As a result of the lemma we have the following corollary, which in conjunction with
Theorem 1 proves Theorem 4.

Corollary 1 Let (F, S) be a market in discrete time, t ∈ {0, 1, . . .}. If S is an (F, Q) lo-
cal martingale on {0, . . . , T}, it is in fact a martingale. Hence if (NFLVR) holds on
{0, . . . , T}, the market is automatically efficient on {0, . . . , T}.

7The second author learned this result from Martin Schweizer in a course at ETH Zurich.
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Proof. The first statement is immediate from Lemma 7, which applies since each Si is
nonnegative and Si

0 is deterministic. The second statement follows from the Fundamental
Theorem of Asset Pricing.

Notice that since NFLVR implies that a true martingale measure exists, the Dalang-
Morton-Willinger (DMW) Theorem [11] lets us conclude that in discrete time, NFLVR
excludes arbitrage using strategies that are not necessarily admissible. Conversely, if no
such arbitrage opportunities exist, the DMW Theorem gives an equivalent martingale
measure, thus showing that the market is efficient. This connection is relevant, because
in discrete time the setting of the DMW Theorem is arguably more suitable than that of
NFLVR.

4 Different Information Sets

In this section we study how market efficiency is affected by changes in the information
sets, both information reductions and expansions. More formally we consider nested fil-
trations F ⊂ G, and study conditions under which efficiency with respect to F carries
over to G, and vice-versa. We work on the infinite horizon economy [0,∞), although all
results remain valid for finite horizons [0, T ] as well. The results in this section relies
crucially on the characterization of efficiency in terms of equivalent martingale measures.
The corresponding analysis in the context of an equilibrium model would be much more
complicated.

4.1 Filtration Reduction

If (G, S) is known to be efficient and we want to deduce the efficiency of (F, S), the analysis
is particularly simple. We therefore start by treating this case. The following result is
classical, see e.g. [49], Theorem I.21:

Lemma 8 Let a filtered probability space be given. A càdlàg, adapted process M such that

E(|Mτ |) <∞ and E(Mτ ) = E(M0)

for every [0,∞]-valued stopping time τ is a uniformly integrable martingale.

Theorem 5 Let S be an n-dimensional G semimartingale with nonnegative components
and suppose that the market (G, S) is efficient. If F ⊂ G is a filtration to which S is
adapted, then S is an F semimartingale, and (F, S) is efficient.

Proof. By Theorem 1 there is Q ∼ P such that S is a (G, Q) uniformly integrable
martingale. Let τ be any [0,∞]-valued F stopping time. It is then also a G stopping time,
so EQ(|Si

τ |) <∞ and EQ(Si
τ ) = EQ(Si

0) for each i by the optional stopping theorem. But
then S is a uniformly integrable (F, Q) martingale by Lemma 8, and we may conclude by
Theorem 1.

With respect to the model described in Section 2 and the information sets discussed
in the finance literature, efficiency of (F, S) is called semi-strong efficiency, since in our

18



economy F corresponds to publicly available information. Theorem 5 then proves that
semi-strong form efficiency implies weak-form efficiency. Weak-form efficiency corresponds
to the information set generated by past security prices (FS , S), and in our economy FS ⊂
F. In contrast, strong-form efficiency, inside information, corresponds to an information
set expansion. This is discussed in the next section.

4.2 Filtration Expansion

For market efficiency under information expansion, we start with an efficient market (F, S)
and consider a larger filtration G ⊃ F. In general, it is well known in the finance literature
(e.g. Fama [22], p. 388, Jensen [37], p. 97) that when the information set is expanded to
include inside information, market efficiency need not be preserved. Using our charac-
terization theorems, we can easily confirm these insights with a simple example. In this
example, the additional information is knowing the risky security’s price at a later date.
Given this information, an arbitrage strategy is easily constructed.

Consider a market consisting of only two assets, the money market account and a
single risky security. Let the risky security’s price process be S1

t = exp(Bt − 1
2 t) where

B is a Brownian motion on [0, 1] with the natural filtration F. We know that the market
(F, S) is efficient since there exists a martingale probability measure. Indeed, S is already
a martingale under P .

Next, consider the inside information set G = (Gt)0≤t≤1 where Gt = Ft ∨ σ(S1
1) repre-

sents all information, including the future realizations of the risky security’s time 1 value.
This information is known at time 0. Then, one can show (see Itô [30]) that S1 is a G semi-
martingale. The market (G, S) is not efficient. Indeed, consider the admissible strategy
Ht = 1{S1

1≥2}1(0,1](t) whose final payoff is (S1
1 − 1)1{S1

1≥2}. If P{S1
1 ≥ 2} > 0, then this

admissible strategy is an arbitrage opportunity. Hence, NA is violated, thus also ND and
NFLVR. Therefore, by Theorem 1, the market based on the augmented information set
(G, S) is not efficient.

A different and perhaps more important question in this context is the following: if
(F, S) is efficient and (G, S) satisfies NFLVR, when is (G, S) efficient? We know, via
Theorem 1, that a necessary and sufficient condition is that ND holds also for (G, S). The
next section gives an explicit example where passing from (F, S) to (G, S) can yield an
inefficient market, which however still satisfies NFLVR.

4.2.1 Example (An NFLVR but Inefficient Market)

We now give an example of a market (F, S) that is efficient, and where under information
expansion G ⊃ F, the market (G, S) satisfies NFLVR but not ND. The example is based
on a construction by Delbaen and Schachermayer [18], which we repeat here for clarity of
the presentation. The time set is [0,∞] and the values at infinity of all involved processes
are determined by their limits as t→∞, which always exist.

Let the filtration F be the natural filtration generated by two independent Brownian
motions W and B. In this example we take F = F∞. Define the stopping times

τ = inf{t ≥ 0 : E(W )t = 2} and ρ = inf{t ≥ 0 : E(B)t = 1/2}
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where E(B)t = exp(Bt − 1
2 t) is the stochastic exponential of the Brownian motion B, and

similarly for E(W ). Define processes S and Z by

S = E(B)τ∧ρ and Z = E(W )τ∧ρ.

Lemma 9 (Delbaen and Schachermayer [18]) The following statements hold:

(i) S is a non-uniformly integrable P local martingale.

(ii) Z is a uniformly integrable P - martingale with Z∞ > 0 a.s. and EZ∞ = 1.

(iii) SZ is a uniformly integrable P - martingale, implying that S is a uniformly integrable
martingale under the measure Q ∼ P given by dQ = Z∞dP .

(iv) P (τ <∞) = 1
2 .

The next step is to construct a filtration G ⊃ F such that the price process S still
satisfies NFLVR (Mloc(G) 6= ∅), but no R ∈ Mloc(G) exists under which S becomes
uniformly integrable. We let G be the initial expansion of F with the stopping time τ ,
i.e. the right-continuous completion of

F ∨ σ(τ) = (Ft ∨ σ(τ))t≥0.

(Note that G∞ = F∞ = F .) Initial expansions of filtrations have been studied exten-
sively by several authors, see e.g. Jacod [32] and the book [38]. However, our example is
sufficiently simple that we do not need the general theory of initial expansions.

Lemma 10 The process B is Brownian motion with respect to (G, P ).

Proof. Fix 0 ≤ s < t < ∞. The distribution under P of Bt − Bs does not depend
on the filtration, so it remains normally distributed with zero mean and variance t − s.
Moreover, B is certainly G adapted. It remains to prove that Bt − Bs is independent of
Gs under P . Note that the filtration G is the right-continuous completion of

(G0
t )t≥0 = (FB

t ∨ FW
t ∨ σ(τ))t≥0,

where (FB
t )t≥0 and (FW

t )t≥0 denote the natural filtrations of B and W , respectively. Pick
any continuous and bounded function f : R → R, and define F = f(Bt − Bs). Let X,
Y , and Z be bounded random variables measurable with respect to FB

s , FW
s , and σ(τ),

respectively. Since FX is FB
∞-measurable, Y Z is FW

∞ -measurable, and B and W are
independent under P , it follows that FX and Y Z are independent under P . Similarly,
X and Y Z are independent. Moreover, since B is Brownian motion, F is independent of
FB

s , and thus of X. This yields

EP (FXY Z) = EP (FX)EP (Y Z) = EP (F )EP (X)EP (Y Z) = EP (F )EP (XY Z).
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By the Monotone Class Theorem, we get EP (Fg) = EP (F )EP (g) for every bounded,
G0

s -measurable g. Now let F ε = f(Bt −Bs+ε) for ε > 0 small, and pick any bounded, Gs-
measurable g. Then g is G0

s+ε-measurable, so by the above, EP (F εg) = EP (F ε)EP (g). Let-
ting ε ↓ 0 and using continuity and boundedness of f , we obtain EP (Fg) = EP (F )EP (g).
This suffices to conclude that Bt −Bs and Gs are independent.

As a consequence of Lemma 10 and the fact that τ∧ρ is a G stopping time, S = E(B)τ∧ρ

remains a (G, P ) local martingale. In particular, S satisfies NFLVR with respect to G.
However, the following result shows that ND fails, which completes our example.

Theorem 6 The market (G, S) constructed above does not satisfy ND.

Proof. We will prove that M(G) = ∅. Define the G adapted process S̃ = 1{τ=∞}S.
We claim that if S is a (G, R) uniformly integrable martingale for some R ∼ P , then so is
S̃. Indeed, in this case

S̃t = 1{τ=∞}St = 1{τ=∞}ER(S∞ | Gt) = ER(1{τ=∞}S∞ | Gt),

so that S̃ is closed by 1{τ=∞}S∞. Suppose for contradiction that such an R exists. Then

ER(S̃∞) = ER(S̃0) = R(τ = ∞).

On the other hand,

ER(S̃∞) = ER(1{τ=∞}E(B)ρ) =
1
2
R(τ = ∞).

Since R ∼ P and P (τ = ∞) = 1
2 > 0, this is a contradiction. It follows that S̃ cannot be

a (G, R)-uniformly integrable martingale for any R ∼ P , so neither can S.

The remainder of this section looks for alternative conditions that imply efficiency
(or equivalently ND) under an information set expansion. We discover three sufficient
conditions; if the market is either: (i) discrete time, (ii) complete, or (iii) the H-hypothesis
holds.

4.2.2 Discrete Time Markets

In a discrete time market, if (F, S) is efficient and (G, S) satisfies NFLVR, then (G, S) is
efficient. This follows directly from Theorem 4 since, under this hypothesis, NFLVR is a
sufficient condition for the efficiency of (G, S). For continuous time models, however, the
situation is much more complex.

4.2.3 Complete Markets

If (F, S) is a complete and efficient market and (G, S) satisfies NFLVR, then (G, S) is
efficient. This follows because in a complete market, strategies which are maximal in the
smaller filtration also remain maximal in the larger filtration (subject to certain regularity
conditions). Hence, information expansion introduces no new profitable trading strategies.
To prove this claim, we start with the definition of a complete market.

We will use the following definition of completeness; it says that there is only one
risk-neutral measure on F∞.
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Definition 6 (Completeness) A market (F, S) is called complete if it satisfies NFLVR
and all Q ∈M(F) coincide on F∞.

For the rest of this section, we restrict attention to the case where the security process
S is strictly positive and F locally bounded. This guarantees that S is a special semimartin-
gale, which is needed for the proof of the following lemma.

Lemma 11 Let S be an n-dimensional, locally bounded F semimartingale with positive
components, satisfying NFLVR with respect to F. If G ⊃ F is a larger filtration, then
Mloc(G) ⊂Mloc(F).

Proof. A theorem by Stricker [54] says that if M is a positive G local martingale,
then it is an F supermartingale, and if in addition M is F special, then it is an F local
martingale. Each Si satisfies these conditions under any Q ∈Mloc(G), taking into account
that S is locally bounded with respect to F and hence special.

Theorem 7 Let (F, S) be a complete market, and suppose that S is strictly positive and
locally bounded. If G ⊃ F is a larger filtration such that (G, S) satisfies NFLVR, then
every locally bounded F-maximal strategy is G-maximal.

In particular, if (F, S) is efficient, then so is (G, S).

Proof. Since S satisfies NFLVR with respect to G, it is a G semimartingale. By
Theorem IV.33 in [49], the stochastic integral H ·S does not depend on the filtration (F or
G) as long as H is F predictable and locally bounded. Now, let H be a locally bounded,
F-maximal strategy. Then EQ(H ·S)∞ = 0 for some Q ∈Mloc(F) by Lemma 1. However,
(G, S) satisfies NFLVR, so with Lemma 11 and the completeness assumption we get that

∅ 6= Mloc(G) ⊂Mloc(F) = {Q}.

Therefore Q ∈ Mloc(G), so another application of Lemma 1 shows that H is G-maximal.
Finally, ND and hence completeness of (G, S) now follows from the fact that the strategies
H i = (0, . . . , 0, 1, 0, . . . , 0), which are F-maximal by assumption, are also G-maximal.

An interpretation of Theorem 7 is that given a complete and efficient market (F, S),
any additional information that introduces inefficiencies in (G, S) will in fact introduce
arbitrage opportunities as well, in the sense of NFLVR.

4.2.4 Hypothesis H

This section shows that if (F, S) is an efficient market, (G, S) satisfies NFLVR, and G ⊃ F
is such that the Hypothesis H holds, then (G, S) is efficient. Hypothesis H refers to
the property that given two nested filtrations F ⊂ G and a probability P , any (F, P )
martingale is again a (G, P ) martingale. An alternative terminology is that F is immersed
in G under P .

In modeling credit risk, information expansion and reduction are important considera-
tions. First, differential information characterizes the relationship between structural and
reduced form credit risk models. A reduced form model can be obtained via information
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reduction in a structural model (see Jarrow and Protter [34] for a review). Second, within
a reduced form credit risk model, an economy is often characterized by the evolution of a
set of state variables yielding the information set F. And, default information is usually
included via an expansion of this filtration to include the information generated by a set of
default times, yielding the larger information set G. One then studies the conditions under
which the martingale pricing technology extends from F to G. The H-hypothesis guar-
antees this martingale pricing extension, see Elliott, Jeanblanc and Yor [21] and Bielecki
and Rutkowski [3]. It is not surprising, therefore, that the H-hypothesis also plays an
important role in understanding information expansion with respect to market efficiency.

The following characterization of Hypothesis H is due to Brémaud and Yor [4].

Theorem 8 (Brémaud-Yor) The following are equivalent:

(i) Hypothesis H holds between F and G under the measure P .

(ii) F∞ and Gt are conditionally independent given Ft. That is, for every F∞-measurable
nonnegative F and Gt-measurable nonnegative Gt,

EP (FGt | Ft) = EP (F | Ft)EP (Gt | Ft).

The next result was proved by Coculescu, Jeanblanc and Nikeghbali [9] in the special
case of progressive expansions with random times. Our argument uses the same idea, but
the expanded filtration G ⊃ F is now completely general.

Lemma 12 Suppose that Q ∈ Mloc(F) and that Hypothesis H holds between F and G
under some equivalent measure R ∼ Q. Then there is Q∗ ∈ Mloc(F) such that F is
immersed in G under Q∗, and Q∗ = Q on F∞.

Proof. Let Z = ER(dQ
dR | F∞) and define Q∗ via dQ∗ = ZdR. Then for A ∈ F∞,

EQ∗(1A) = ER(Z1A) = ER

(
ER

(
dQ

dR
1A | F∞

))
= EQ(1A),

so Q = Q∗ on F∞. In particular, then, Q∗ ∈ Mloc(F). Now, choose any F∞-measurable
F ≥ 0 and Gt-measurable Gt ≥ 0. Bayes’ rule, immersion under R, and the fact that Z is
F∞-measurable and nonnegative yields

EQ∗(FGt | Ft) =
ER(ZFGt | Ft)
ER(Z | Ft)

=
ER(ZF | Ft)
ER(Z | Ft)

ER(Gt | Ft) = EQ∗(F | Ft)ER(Gt | Ft).

Similarly we obtain

EQ∗(Gt | Ft) =
ER(ZGt | Ft)
ER(Z | Ft)

= ER(Gt | Ft).

Hence EQ∗(FGt | Ft) = EQ∗(F | Ft)EQ∗(Gt | Ft), so immersion holds under Q∗, as
desired.

We now give the key theorem of this section. We note that Hypothesis H only has to
hold under some arbitrary equivalent measure, not necessarily P or some Q ∈Mloc(F).
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Theorem 9 Let (F, S) be a market that satisfies NFLVR. Suppose that G ⊃ F is a larger
filtration such that Hypothesis H holds between F and G under some equivalent measure.
Then (G, S) satisfies NFLVR, and every locally bounded F-maximal strategy is G-maximal.

In particular, if (F, S) is efficient, then so is (G, S).

Proof. By Lemma 12, the intersection Mloc(F) ∩Mloc(G) is non-empty, so (G, S)
satisfies NFLVR. Let H be locally bounded and F-maximal, so that EQ(H · S)T = 0 for
some Q ∈ Mloc(F). By Lemma 12 there is Q∗ ∈ Mloc(G) coinciding with Q on FT , so
EQ∗(H ·S)T = 0 andH is G-maximal. As in the proof of Theorem 7, the local boundedness
ofH ensures thatH ·S does not depend on the filtration. Also as in the proof of Theorem 7,
the efficiency of (G, S) follows from the fact that the strategies H i = (0, . . . , 0, 1, 0, . . . , 0)
remain maximal in G.

5 Market Efficient Price Processes

In this section we consider some models for price processes useful for pricing options on
equities and equity indices. We investigate when these price processes are consistent with
market efficiency.

The time set will always be [0, T ] for some T < ∞. We first consider quite general
local volatility models, where a certain dichotomy is present: if NFLVR holds, then either
Mloc = M or M = ∅. In the first case, by Theorem 1, the market (F, S) is efficient, while
in the second case it is not. We also look at a class of stochastic volatility models and
give sufficient conditions for efficiency. Our goal is to show that there are large classes
of efficient models, many of them with price processes that are strict local martingales
with respect to the measure under which their dynamics would typically be specified.
Results in this vein are well known in the one-dimensional case. In contrast, our results
are established in the multi-dimensional case, which is the appropriate setting since (F, S)
should be thought of as a model for an entire market.

These results have two uses. First, they provide an alternative method for testing
market efficiency based on a joint hypothesis. Here the joint hypothesis is the specification
of a particular stochastic process for asset prices. This additional hypothesis is testable
independently of market efficiency. And, an efficient market is a nested subset—the price
process supports efficiency if its parameters are in a particular subset and it is inefficient
otherwise. In contrast, the classical joint hypothesis—specifying a particular equilibrium
model—is not independently testable. The equilibrium model and efficiency are both
accepted or rejected in unison.

Second, these results are useful for pricing securities in positive net supply when one
wants to impose more structure on the price process than just NFLVR. In particular, one
may only want to consider price processes that are consistent with some economic equilib-
rium, or alternatively stated, are consistent with an efficient market. Our characterization
theorems enable one to understand the additional structure required. Such restrictions
have already proven useful in the context of asset price bubbles, see Jarrow, Protter and
Shimbo [35], [36].

24



5.1 Local Volatility Models

Let (Ω,F , P ) be a probability space and let W be d-dimensional Brownian motion with
its natural filtration F. We work on the time interval [0, T ]. Assume that the price process
S = (S1, . . . , Sn) is governed by the following system of stochastic differential equations.

dSi
t = σi(St, t)dWt + bi(St, t)dt (i = 1, . . . , n), (3)

where σi : Rn× [0, T ] → Rd and bi : Rn× [0, T ] → R are such that a strong solution exists
with Si

t > 0 for all t ∈ [0, T ].
Assume now that NFLVR holds, so that Mloc(F) 6= ∅. By the martingale representa-

tion theorem, the density process Zt = EP (dQ
dP | Ft) associated with some Q ∈ Mloc(F)

can be expressed as dZt = ZtθtdWt for some adapted, Rd-valued process θ that depends
on Q. Defining WQ = W −

∫ ·
0 θsds, Girsanov’s theorem implies that

dSi
t = σi(St, t)dW

Q
t + (σi(St, t)θt + bi(St, t))dt (i = 1, . . . , n).

Since Si is a local martingale under Q, the drift term is identically zero, so that

dSi
t = σi(St, t)dW

Q
t (i = 1, . . . , n).

Now, WQ is Brownian motion under Q, so we deduce that S has the same law under every
Q ∈Mloc(F). This immediately yields the following theorem, which, although well-known,
we state due to its relevance in the present context.

Theorem 10 If the local volatility model described in (3) satisfies NFLVR, then it is
either a true martingale under every Q ∈Mloc and (F, S) is efficient, or it is a strict local
martingale under every Q ∈Mloc and (F, S) is inefficient.

Which of the two possibilities actually holds is determined entirely by the properties of
σ. Necessary and sufficient conditions under various regularity assumptions on σ have been
investigated by several authors, see for example Carr, Cherny and Urusov [6], Cheridito,
Filipovic and Yor [7], and Mijatovic and Urusov [47]. For example, in the case where
n = 1 and σ1(x, t) = σ(x) for some measurable function σ(·) satisfying weak regularity
conditions, the price process is a true martingale under Q if and only if for some c > 0,∫ ∞

c

x

σ(x)2
dx = ∞,

see Carr, Cherny and Urusov [6] for details.
We remark that the question of whether the local volatility model described above

satisfies NFLVR or not is less interesting; this is almost always assumed, and the risk-
neutral dynamics are then specified directly (i.e. one does not model the bi.)

5.2 Stochastic Volatility Models

We consider a class of stochastic volatility models where the correlation structure between
the different processes does not change with time. We expand upon earlier work of Sin [53],
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who considers a similar model in the one-dimensional case. See also Hobson [28], who
investigates related problems in the one-dimensional case.

We work on [0, T ], with W being d-dimensional Brownian motion on (Ω,F , P ) and F
its natural filtration. The model is given by the following system of stochastic differential
equations.

dSi
t = Si

tf
i(vt, t)σidWt (i = 1, . . . , n)

dvj
t = ajdWt + bj(vj

t , t)dt (j = 1, . . . ,m).

Here σi, aj ∈ Rd for i = 1, . . . , n and j = 1, . . . ,m. Moreover, each bj : R × [0, T ] → R
is assumed to be Lipschitz. This guarantees that the SDE for vt = (v1

t , . . . , v
m
t ) has a

strong (non-explosive) solution on [0, T ]. If, for instance, f i : Rm × [0, T ] → R+ is locally
bounded for each i, the local martingales

Si
t = Si

0 exp
( ∫ t

0
f i(vs)σidWs −

1
2
|σi|2

∫ t

0
f i(vs)2ds

)
, i = 1, . . . , n,

stay strictly positive (we assume that Si
0 > 0 for all i.) This will be the case under the

conditions we will impose on the f i. Notice that NFLVR is automatically satisfied since
each Si is a local martingale under the original measure. Specifying the model in this way
is typical in applications, and allows us to focus on the question of whether ND holds.

We will impose the following condition on the model.

Condition 1 The functions f i are Lipschitz on (−∞, C]m for every C > 0. More pre-
cisely, there exist constants KC such that for i = 1, . . . , n,

|f i(y, t)− f i(z, t)| ≤ KC |y − z|

for every y, z ∈ Rm with yj ≤ C, zj ≤ C, j = 1, . . . ,m.

At first, this condition may seem restrictive and somewhat arbitrary. However, given
that f i(y, t) is always nonnegative and should be thought of as being increasing in each
volatility component yj , the condition makes more sense. Notice that it only imposes very
mild restrictions on the growth rate of f i(y, t) as the components of y become large.

An important special case where the Lipschitz condition on bj holds is when bj(vt, t) =
ρj(κj − vj

t ) for some positive constants ρj and κj , i.e. where the volatilities are mean-
reverting. This is similar to the situation considered by Sin [53].

We now state the main theorem of this section. It provides sufficient conditions guar-
anteeing that ND holds. In what follows, ‘prime’ denotes transpose.

Theorem 11 Consider the stochastic volatility model with constant correlations described
above, and assume that Condition 1 is satisfied. If there is a vector θ ∈ Rd such that for
all i and j,

θ′σi = 0, θ′aj ≥ σ′iaj , θ′aj ≥ 0,

then M 6= ∅. If σ′iaj ≤ 0 for all i and all j, then S is already a martingale under P .
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The following corollary gives a simple geometric condition that guarantees the existence
of the vector θ required in Theorem 11. For a set of vectors y1, . . . , yn, let conv(y1, . . . , yn)
denote their convex hull, and span(y1, . . . , yn) their linear span.

Corollary 2 Consider the stochastic volatility model with constant correlations described
above, and assume that Condition 1 is satisfied. If

conv(a1, . . . , am) ∩ span(σ1, . . . , σn) = ∅,

then M 6= ∅.

Proof. Since conv(a1, . . . , am) is compact and convex, and span(σ1, . . . , σn) is closed
and convex they can be strictly separated by a hyperplane. In particular, there exists
θ ∈ Rd and α ∈ R such that θ′aj > α for all j and θ′(λσi) ≤ α for all i and all λ ∈ R.
Take λ = ±1 to see that α = 0 and θ′σi = 0 for all i. By positive scaling we may assume
that θ′aj ≥ σ′iaj for all i and j. Apply Theorem 11 with this θ.

The proof of Theorem 11 requires two lemmas, both of which are similar to results that
are well-known in the literature. The first lemma is a slight modification of a comparison
theorem due to Ikeda and Watanabe, see [29], Theorem 1.1.

Lemma 13 Suppose that for j = 1, 2 and some continuous a : R× R+ → Rd, we have

Y j
t = Y j

0 +
∫ t

0
a(Y j

s , s)dWs +
∫ t

0
βj

sds,

where W is d-dimensional Brownian motion and βj are adapted processes. Suppose the
following conditions are satisfied:

(i) β1
t ≥ b1(Y 1

t , t) and b2(Y 2
t , t) ≥ β2(t) for some measurable functions b1, b2 with

b1(y, t) ≥ b2(y, t) for all y and t.

(ii) There is an increasing ρ : R+ → R+ with ρ(0) = 0,
∫
0+ ρ(u)

−2du = ∞ such that for
all x, y ∈ R and t ∈ R+, a satisfies

|a(x, t)− a(y, t)| ≤ ρ(|x− y|)

(iii) Y 1
0 ≥ Y 2

0 .

(iv) Pathwise uniqueness holds for one of dYt = a(Yt, t)dWt + bj(Y·, t)dt, j = 1, 2.

Then Y 1
t ≥ Y 2

t for all t.

Proof. Theorem 1.1 in [29] contains the above statement, but for the case d = 1.
However, the proof remains valid for our setup.

The second lemma uses the same well-known techniques as the proof of Lemma 4.2
in Sin [53]. See also [6], [7], [47]. For completeness and since the proof is quite short, we
provide the details in the appendix. Thanks are due to Younes Kchia, who pointed out
an error in an earlier version of this lemma.
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Lemma 14 Let Y be an n-dimensional diffusion on [0, T ] satisfying a stochastic differ-
ential equation

dYt = A(Yt, t)dWt + b(Yt, t)dt,

where W is d-dimensional Brownian motion and A and b are measurable functions with
values in Rn×d and Rn, respectively. Assume that a non-explosive solution exists and is
pathwise unique on [0, T ]. If f is an Rd-valued locally Lipschitz function such that the
auxiliary SDE

dŶt = A(Ŷ·, t)dWt + [b(Ŷ·, t) +A(Ŷ·, t)f(Ŷ·, t)]dt, Ŷ0 = Y0 (4)

has a non-explosive and pathwise unique solution on [0, T ], then the positive local martin-
gale X given by

Xt = exp
( ∫ t

0
f(Ys, s)dWs −

1
2

∫ t

0
|f(Ys, s)|2ds

)
is a true martingale on [0, T ].

Proof of Theorem 11. The goal is to find a measure Q ∼ P under which each Si

becomes a martingale. The proof proceeds in a number of steps.
Step 1. As a candidate density process for a measure change, let Z be the stochas-

tic exponential of −
∫ ·
0 h(vt, t)θ′dWt, where we define h : Rm × [0, T ] → R by h(y, t) =

maxi=1,...,n f
i(y, t). Then Z is the unique solution of

dZt = −Zth(vt, t)θdWt, Z0 = 1. (5)

Since vt is non-explosive, Z is a strictly positive local martingale. Lemma 14 implies that
it is a true martingale if v̂t is non-explosive and pathwise unique, where

dv̂j
t = ajdWt +

[
bj(v̂j

t , t)− h(v̂t, t)a′jθ
]
dt, v̂j

0 = vj
0 (j = 1, . . . ,m).

Step 2. Due to Condition 1, v̂t is non-explosive and pathwise unique at least up to τk,
where

τk = inf{t ≥ 0 : max
j=1,...,m

v̂j
t ≥ k}.

We need to show that, almost surely, τk ≥ T for large enough k. Since a′jθ ≥ 0, the drift
coefficient of v̂j

t is bounded above by bj(v̂j
t , t). Lemma 13 then shows that v̂j

t ≤ wj
t up to

time τk, where wj is the solution of

dwj
t = ajdWt + bj(wj

t , t)dt, w0 = vj
0,

which is pathwise unique. Note that the condition on the volatility coefficient in Lemma 13
is satisfied since aj is constant. Since bj is Lipschitz, each wj is non-explosive and we
deduce that no v̂j can explode to +∞. This shows that τk ≥ T for large enough k.

Step 3. From Steps 1–2 it follows that Z is a true martingale on [0, T ], so it is the
density process of the measure Q given by dQ = ZTdP . Then dBt = dWt + h(vt, t)θdt is
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Brownian motion under Q by Girsanov’s theorem, and the dynamics of S and v can be
written

dSi
t = Si

tf
i(vt, t)σidBt (i = 1, . . . , n)

dvj
t = ajdBt +

[
bj(vj

t , t)− h(vt, t)a′jθ
]
dt (j = 1, . . . ,m),

taking into account that θ′σi = 0 for all i. The auxiliary SDE associated with Si is

dv̂j
t = ajdBt +

[
bj(v̂j

t , t) + f i(v̂t, t)σ′iaj − h(v̂t, t)θ′aj

]
dt, v̂j

0 = vj
0 (j = 1, . . . ,m).

Since θ′aj ≥ σ′iaj and h(v̂t, t) ≥ f i(v̂t, t), the drift coefficient is bounded above by bj(v̂j
t , t)+

f i(v̂t, t)[σ′iaj − θ′aj ] ≤ bj(v̂j
t , t). The same argument as in Step 2 shows that v̂t does not

explode on [0, T ]. This proves that Si is a martingale under Q for each i and finishes the
proof of part (i) of the theorem.

To prove the last assertion, notice that if 〈σi, aj〉 ≤ 0 for all i and j, then θ = 0 works.
Therefore S is already a martingale under the original measure.

The larger d−m, the “easier” it is for condition (i) in Theorem 11 to be satisfied. In
particular, it holds if m = 1 and a1 is not in the span of σ1, . . . , σn. On the other hand,
if σ1, . . . , σn span all of Rd, then of course condition (i) always fails. This is the case of a
complete market. It should however be emphasized that Theorem 11 only gives sufficient
conditions for checking (ND).

One noteworthy special case where part (ii) of Theorem 11 applies is when each of the
vectors aj is orthogonal to all the σi. In this case there are, after a change of coordinates,
two independent sets of Brownian motions, one of them driving the Si and the other
driving the vj .

In general we cannot expect the sufficient conditions of Theorem 11 to also be necessary
for ND. This is because they are independent of the choice of f i and bj . By choosing
appropriate f i, for instance by making them bounded, we can always guarantee that ND
holds, independently of a1, . . . , am and σ1, . . . , σn. A weaker result is that under certain
conditions on the correlation structure, one can find functions f i and bj such that ND
fails. (Of course, the f i we consider should always satisfy the basic assumptions of the
model, in particular Condition 1.)

Theorem 12 Consider the stochastic volatility model with constant correlations, and as-
sume there is a vector η ∈ conv(a1, . . . , am) ∩ span(σ1, . . . , σn) with η′σk > 0 for some k.
Then there exist functions f i and bj that satisfy the model assumptions, such that Sk is a
strict local martingale under every Q ∈Mloc.

Proof. Assume for notational simplicity that |η| = |σk| = 1. Write η = λ1a1 + · · · +
λmam for convex weights λj , and define

fk(y, t) = exp
( m∑

j=1

λjyj − 1
2
t
)
, f i(y, t) ≡ 1 (i 6= k),
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and
bj(yj , t) ≡ 0 (j = 1, . . . ,m).

Define also B1
t = ηWt and B2

t = σkWt, which are one-dimensional Brownian motions with
d〈B1, B2〉t = η′σkdt, where η′σk > 0. With ut = exp(Bt − 1

2 t), we then have

dSk
t = Sk

t utdB
2
t

dut = utdB
1
t .

From Lemma 4.2 and Lemma 4.3 in [53], we deduce that Sk is a strict local martingale.
Now, pick an arbitrary Q ∈ Mloc and let Z be the corresponding density process. By
martingale representation, dZt = ZtθtdWt for some Rd-valued process θ. Since every Si

remains a local martingale under Q, it follows that 〈Z, Si〉 = 0. But

〈Z, Si〉t =
∫ t

0
Si

sf
i(vs, s)Zsσ

′
iθtdt,

so because Si
sf

i(vs, s)Zs > 0, we have σ′iθt = 0. Since η ∈ span(σ1, . . . , σn), we also have
η′θt = 0. Thus B1 and B2 are still Brownian motions under Q, so the law of (Sk, u) is
unchanged and we deduce that Sk is a strict local martingale under Q. This completes
the proof.

6 Conclusion

Market efficiency has been a topic discussed and tested in the financial economics literature
for over four decades. But, despite this extensive investigation and analysis, there still
exist some common misbeliefs regarding the meaning and testing of an efficient market.
By formalizing the definition of an efficient market, this paper clarifies these misbeliefs.
We prove various theorems relating to an efficient market for understanding empirical
testing, profitable trading strategies, and the properties of asset price processes. Perhaps
most interesting and in contrast to common belief, we show that one can test an efficient
market without specifying a particular equilibrium model. We hope that our mathematical
characterizations of market efficiency lead to subsequent research studying its additional
implications with respect to both empirical testing and derivatives pricing.

A Appendix

A.1 Proof of Lemma 14

Throughout, P is the measure under which W is Brownian motion. Define stopping times

τk = inf{t ≥ 0 :
∫ t

0
|f(Ys, s)|2ds ≥ k} ∧ T

and processes Xk = Xτk = exp{Mk − 1
2〈M

k,Mk〉}, where Mk
t =

∫ t∧τk

0 f(Ys, s)dWs. By
Novikov’s criterion, each Xk is a true martingale. It stays strictly positive, so we define
equivalent measures Qk by dQk = Xk

TdP . By Girsanov’s theorem,

dYt = A(Yt, t)dW k
t +

[
b(Yt, t) + 1{t≤τk}A(Yt, t)f(Yt, t)

]
dt,
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where dW k
t = dWt−1{t≤τk}f(Yt, t)dt is Brownian motion under Qk. Next, define stopping

times

τ̂k = inf{t ≥ 0 :
∫ t

0
|f(Ŷs, s)|2ds ≥ k} ∧ T.

By the non-explosion of Y and Ŷ , the stopping times τk and τ̂k are equal to T for all
sufficiently large k, almost surely. Moreover, by pathwise uniqueness, the law of τ̂k under
P is the same as the law of τk under Qk. These facts yield

EP (XT ) = lim
k→∞

E(XT1{τk=T})

= lim
k→∞

E(XT∧τk
1{τk=T})

= lim
k→∞

Qk(τk = T )

= lim
k→∞

P (τ̂k = T ) = 1.

This shows that X has constant expectation and hence is a martingale.

A.2 Proof of Lemma 7

Let (Tn) be a localizing sequence for L. For each t = 1, . . . , T ,

E(L−t | Ft−1)1{Tn>t−1} = E(L−t 1{Tn>t−1} | Ft−1)1{Tn>t−1}

≥ −LTn
t−11{Tn>t−1}

= −Lt−11{Tn>t−1},

where the inequality uses that both sides are zero on {Tn < t}, whereas on {Tn > t− 1},
L−t 1{Tn>t−1} = (LTn

t )− ≥ −LTn
t . Let n → ∞ and use L−t ≥ 0 to obtain E(L−t | Ft−1) ≥

L−t−1. This yields E(L−t−1) ≤ E(L−t ), and since E(L−T ) < ∞, E(L−t ) < ∞ for all t =
0, . . . , T . Hence L− is a submartingale, so for all t and n, E(L−t∧Tn

) ≤ E(L−T ).
Next, consider the positive parts L+

t . By Fatou’s lemma,

E(L+
t ) ≤ lim inf

n→∞
E(Lt∧Tn + L−t∧Tn

) = E(L0) + lim inf
n→∞

E(L−t∧Tn
).

By the first part of the proof, this is dominated by E(|L0|)+E(L−T ) <∞. We thus obtain
E(|Lt|) <∞ for all t.

Finally, for fixed t, supn |LTn
t | ≤ maxt=0,...,T |Lt| ≤

∑T
t=0 |Lt|, which has finite expec-

tation. So by Dominated Convergence,

E(Lk | Fk−1) = lim
n
E(LTn

k | Fk−1) = lim
n
LTn

k−1 = Lk−1.

This finishes the proof.
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Probabilités, 258: 118–129, 1972.

[47] A. Mijatovic and M. Urusov. On the martingale property of certain local martingales.
arXiv:0905.3701v2, 2009.

[48] K. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, 1967.

[49] P. Protter. Stochastic Integration and Differential Equations. Springer-Verlag, Hei-
delberg, second edition, 2005.

[50] L. Rogers and D. Williams. Diffusions, Markov Processes and Martingales, Volume
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